обезвреживание и захоронение радиоактивных отходов и отходов содержащих диоксины

обезвреживание и захоронение радиоактивных отходов

Очень сложной и пока еще не решенной проблемой является обезвреживание и захоронение радиоактивных и диоксино — содержащих отходов. Общепризнано, что избавление человечества от этих отходов — одна из самых острых экологических проблем.

В нашей стране действуют несколько законодательных и нормативно-правовых норм, определяющих использование, хранение и захоронение радиоактивных отходов, в частности нормы радиационной безопасности (НРБ-76/87). Правовые основы обеспечения радиационной безопасности в России определены в Федеральном законе «О радиационной безопасности населения» (1995).

Наиболее разработанными методами утилизации муниципальных радиоактивных отходов, т. е. отходов, не связанных с деятельностью АЭС и военно-промышленного комплекса, являются цементирование, остекловывание, битуминирование, сжигание в керамических камерах и последующее перемещение продуктов переработки в специальные хранилища («могильники»).

обезвреживание и захоронение отходов содержащих диоксины

На специальных комбинатах и пунктах захоронения радиоактивные отходы сжигают до минимальных размеров в прессовочной камере. Полученные брикеты помещают в пластиковые бочки, заливают цементным раствором и отправляют в хранилища («могильники»), врытые в землю на ,5—10 м. По другой технологии — их сжигают, превращают в пепел (золу), упаковывают в бочки, цементируют и отправляют в хранилища.
Для утилизации жидких радиоактивных отходов используют методы остекловывания, битуминирования и др. При остекловывании при температуре 1250—1600 °С образуются гравированные стекла, которые также заковывают в цемент и в бочки, а затем отправляют в хранилища. Однако, по мнению многих специалистов, долговечность бочек-контейнеров сомнительна.
Всего в России действуют около 20 специализированных комбинатов и пунктов захоронения муниципальных отходов. Один из них — НПО Радон», расположенный в 100 км от Москвы, перерабатывает ежегодно 3000 м3 твердых и 350 м3 жидких радиоактивных отводов (Кузнецова, 1995).
В 1993 г. проведена первая в стране инвентаризация мест Хранения и захоронения радиоактивных отходов и разработан Порядок осуществления экологического контроля за охраной окружающей среды при производстве, использовании, захоронении радиоактивных материалов».
Тем не менее практически все существующие способы утилизации и захоронения радиоактивных отходов не решают проблему кардинально и, как отмечает А. В. Яблоков (1995), не Обидно приемлемых путей их решения. Особенно это касается {утилизации и захоронения радиоактивных отходов АЭС и ядерных военных производств, и в первую очередь тех из них, которые относят к категории особо опасных (высокоактивных). По некоторым сведениям, их накопилось в мире более 1200 т и объем их ежегодно увеличивается.
По данным на 2000 г. степень заполнения хранилищ жидких радиоактивных отходов на АЭС в среднем по стране составила 67%. Однако хранилища Белоярской АЭС заполнены на Щ%, Кольской АЭС — на 84% и Смоленской АЭС — на 81% ¦(Кузнецов, 2004).
Международное агентство по атомной энергии (МАГАТЭ) считает предпочтительным захоронение радиоактивных отходов в твердом и отвержденном виде, однако не исключает возможности захоронения и жидких отходов путем перевода их в геологические формации. Разработан метод захоронения особо опасных радиоактивных отходов в подземные емкости различных геологических формаций (массивы каменной соли, скальных грунтов и др.) на глубину не менее 600 м. Однако этот метод не является экологически безопасным и ученые ищут другие, более приемлемые и надежные способы.
Научные коллективы Российского космического агентства и ряд других под руководством Миннауки России сформировали два основных направления локализации высокоактивных радиоактивных отходов:
1. Удалить их навечно, без возможного возврата на Землю, в космическое пространство, за пределы Солнечной системы или на околосолнечные орбиты. Такую идею в свое время выдвигали российские и американские ученые.
2. Ликвидировать физические радиоактивные изотопы, произвести резкое ускорение их превращения, в первую очередь долгоживущих, в стабильные, т. е. провести процесс трансмутации. К таким изотопам относятся: нептуний-237, йод-129, углерод-14, техниций-99, цезий-135, цирконий-93.
Эти направления, сформулированные Л. Катерняком в работе «Избавит ли конверсия Землю от радиоактивных отходов?» (1995) вызывают неоднозначную оценку. К тому же с
т. 50 Закона РФ «Об охране окружающей среды» (1991) запрещалось размещение радиоактивных отходов путем отправки их в космическое пространство или затопления.
Активная борьба с другими весьма опасными диоксины содержащими отходами ведется в США, Японии, странах Западной Европы. По данным печати, в этих странах запрещено использование нескольких десятков диоксин содержащих веществ, а также низкотемпературное сжигание мусора; изменяются технологии, например производства бумаги, внедряется повсеместный строжайший контроль за содержанием диоксинов в промышленной продукции, отходах и продуктах.
Для борьбы с диоксин содержащими отходами в стране важное значение имело принятие летом 1993 г. проекта первого этапа федеральной программы «Защита окружающей среды и населения от диоксинов и диоксино подобных токсикантов ». В настоящее время в Российской Федерации утверждены программы предельно допустимых концентраций для диоксинов —
,5 пг/м3 (в пересчете на 2, 3, 7, 8 — ТХДД). Разработаны и едрены (на водопроводах Уфы и Москвы) технологии очист-
и воды от диоксинов сорбцией на гранулированных активных
(ГАУ).
Проблема борьбы с диоксинами осложняется отсутствием достаточном количестве современной аналитической аппаратуры, малым числом специальных лабораторий, недостаточ-ой обученностью персонала, высокой стоимостью приборов Зарубежных фирм и т. д.
Решение весьма сложной проблемы защиты окружающей Череды от радиоактивных, диоксинсодержащих и других опасных отходов требует дальнейшей концентрации усилий специалистов разного профиля и огромных капиталовложений.